IMATSA – an improved and adaptive intelligent optimization algorithm based on tunicate swarm algorithm

Author:

Chen Yan12,Dong Weizhen2,Hu Xiaochun34

Affiliation:

1. School of Business Administration, Guangxi University, Nanning 530000, China

2. School of Computer and Electronic Information Science, Guangxi University, Guangxi 530004, China

3. College of Big Data and Artificial Intelligence, Guangxi University of Finance and Economics, Guangxi 530007, China

4. Guangxi Key Laboratory of Finance and Economics Big Data, Nanning, Guangxi 530007, China

Abstract

Swarm intelligence optimization algorithm has been proved to perform well in the field of parameter optimization. In order to further improve the performance of intelligent optimization algorithm, this paper proposes an improved and adaptive tunicate swarm algorithm (IMATSA) based on tunicate swarm algorithm (TSA). IMATSA improves TSA in the following four aspects: population diversity, local search convergence speed, jumping out of local optimal position, and balancing global and local search. Firstly, IMATSA adopts Tent map and quadratic interpolation to initialize population and enhance the diversity. Secondly, IMATSA uses Golden-Sine algorithm to accelerate the convergence of local search. Thirdly, in the process of global development, IMATSA adopts Levy flight and the improved Gauss disturbance method to adaptively improves and coordinates the ability of global development and local search. Then, this paper verifies the performance of IMATSA based on 14 benchmark functions experiment, ablation experiment, parameter optimization experiments of Support Vector Machine (SVM) and Gradient Boosting Decision Tree (GBDT), Wilcoxon signed rank test and image multi-threshold segmentation experiment with the performance metrics are convergence speed, convergence value, significance level P-value, Peak Signal-to-Noise Ratio (PSNR) and Standard Deviation (STD). Experimental results show that IMATSA performs better in three kinds of benchmark functions; each component of IMATSA has a positive effect on the performance; IMATSA performs better in parameter optimization experiments of SVM experiment and GBDT; there is significant difference between IMATSA and other algorithms by Wilcoxon signed rank test; in image segmentation, the performance is directly proportional to the number of thresholds, and compared with other algorithms, IMATSA has better comprehensive performance.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3