Enhancement of the wettability of graphite-based lithium-ion battery anodes by selective laser surface modification using low energy nanosecond pulses

Author:

Kleefoot Max-Jonathan,Enderle Sebastian,Sandherr Jens,Bolsinger Marius,Maischik Thomas,Simon Nadine,Martan Jiří,Ruck Simon,Knoblauch Volker,Riegel Harald

Abstract

AbstractThe electrolyte filling process of battery cells is one of the time-critical bottlenecks in cell production. Wetting is of particular importance here, since only completely wetted electrode sections are working. In order to accelerate and facilitate this process, the authors of this study developed a method to significantly increase the wettability of graphite-based anodes by a laser surface modification using low energy nanosecond laser pulses. The anode surface microstructure was evaluated by means of white-light interferometry and scanning electron microscopy. The assessment of wettability was done by drop test and capillary rise test of the liquid electrolyte. The results show that there is a predominantly selective ablation process for laser energy inputs below 2 J/m by which the graphite active material remains unaffected and the binder material is decomposed. The observed increase in surface roughness correlates with the increasing wettability. Investigations using Raman spectroscopy showed that laser treatment leads to a damage on the crystalline structure of the graphite particle surface. However, treating an entire anode including 6 wt% binder and conductive carbon black has shown that the overall amorphous content of the anodes surface can be reduced by 32% through treating the surface with a laser energy of 1.29 J/m. Up to that point, which is the resulting parameter range for the selective process, it is possible to ablate the amorphous binder and carbon black phase coevally exposing graphite particles while keeping their crystalline structure. Exceeding that range, ablation of the whole anode composite dominates and amorphization of the graphite surface occurs. The electrode’s capacity was tested on half-cells in coin cell format. For the whole laser parameter range investigated, the anodes capacity matches the mass loss caused by laser ablation. No additional capacity loss was observed due to amorphization of the exterior graphite particle’s surface.

Funder

Bundesministerium für Wirtschaft und Technologie

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3