A novel image feature descriptor for SLM spattering pattern classification using a consumable camera

Author:

Ji ZeORCID,Han Quanquan

Abstract

AbstractIn selective laser melting (SLM), spattering is an important phenomenon that is highly related to the quality of the manufactured parts. Characterisation and monitoring of spattering behaviours are highly valuable in understanding the manufacturing process and improving the manufacturing quality of SLM. This paper introduces a method of automatic visual classification to distinguish spattering characteristics of SLM processes in different manufacturing conditions. A compact feature descriptor is proposed to represent spattering patterns and its effectiveness is evaluated using real images captured in different conditions. The feature descriptor of this work combines information of spatter trajectory morphology, spatial distributions, and temporal information. The classification is performed using support vector machine (SVM) and random forests for testing and shows highly promising classification accuracy of about 97%. The advantages of this work include compactness for representation and semantic interpretability with the feature description. In addition, the qualities of manufacturing parts are mapped with spattering characteristics under different laser energy densities. Such a map table can be then used to define the desired spatter features, providing a non-contact monitoring solution for online anomaly detection. This work will lead to a further integration of real-time vision monitoring system for an online closed-loop prognostic system for SLM systems, in order to improve the performance in terms of manufacturing quality, power consumption, and fault detection.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3