Additive manufacturing for capacitive liquid level sensors

Author:

Stano GianniORCID,Di Nisio Attilio,Lanzolla Anna Maria,Ragolia Mattia Alessandro,Percoco Gianluca

Abstract

AbstractA new manufacturing wave concerning the Additive Manufacturing of sensors is spreading: several benefits, such as cost, time, and manual task reduction, can be achieved. The aim of the present research is the one-shot Additive Manufacturing of a low-cost capacitive sensor for liquid level sensing. The Material extrusion (MeX) technology was used to fabricate the proposed sensors (composed of a flexible substrate, two conductive electrodes, and a top flexible coverage), and a Design for Additive Manufacturing (DfAM) approach in conjunction with the 3D printing force analysis was performed. Very thin conductive tracks (0.5 mm) were manufactured to obtain a sensor having a final capacitance value of 125 pF, readable by common laboratory instrumentation. The sensor has been tested for the liquid level sensing using two different liquids, i.e., sunflower oil and distilled water, exhibiting very good sensitivity of 0.078 $$\frac{pF}{mm}$$ pF mm and 0.79 $$\frac{pF}{mm}$$ pF mm , respectively, with high repeatability, thus obtaining sensing performances comparable with that of more expensive sensors found in literature. Moreover, the proposed sensor showed high linearity (R2 ≥ 0.997), which resulted in a maximum propagated level error of 1.4 mm. The present research proves that the inexpensive MeX technology can be successfully employed for the fabrication of high-performance capacitive sensors: the sensor manufacturing cost (related to raw materials) is 0.38 €, and no manual assembly tasks were performed. This study lays the foundation for the one-shot fabrication of smart structures with capacitive sensors on board, saving manufacturing time and cost.

Funder

Politecnico di Bari

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3