Liquid level measurement using a single electrode capacitive sensor made of carbon nanotube-paper composite

Author:

Qian Zhongjie,Li Tianyi,Kim Shawn,Cheng Yu-Jen,Sakthivelpathi Vigneshwar,Chung Jae-HyunORCID

Abstract

Abstract Liquid level measurements play a vital role in various fields, including environmental, industrial, and medical applications. While hydrostatic, optical, and ultrasonic sensors are commonly used for this purpose, capacitive sensors have also gained prominence. However, capacitive sensors have inherent limitations in terms of dynamic range and resolution. These sensors consist of a pair of electrodes with a gap, and the size of this gap directly affects the sensor’s dynamic range and resolution. Increasing the gap size enhances the dynamic range but compromises resolution. To overcome this challenge, a novel approach involving the investigation of a single-electrode capacitive sensor is presented. This sensor consists of using a carbon nanotube-paper composite (CPC), which offers unique advantages for measuring liquid levels with improved dynamic range and resolution. The sensing performance of the single-electrode sensor is evaluated in both conductive and non-conductive containers, ensuring its versatility and applicability in different scenarios. Furthermore, the study explores the implementation of a differential configuration for the single-electrode sensor. This configuration aims to enhance accuracy and stability, particularly in achieving femto-Farad level accuracy. By leveraging the potential of the single-electrode capacitive sensor, numerous applications such as liquid level sensing, immersible liquid level sensing, and rain sensing are demonstrated. This result holds potential for advancing liquid level measurement capabilities across various industries and opening up new opportunities for sensor applications.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3