A novel approach for surface defect detection of lithium battery based on improved K-nearest neighbor and Euclidean clustering segmentation

Author:

Liu Xinhua,Wu Lequn,Guo Xiaoqiang,Andriukaitis Darius,Królczyk Grzegorz,Li Zhixiong

Abstract

AbstractSurface defects of lithium batteries seriously affect the product quality and may lead to safety risks. In order to accurately identify the surface defects of lithium battery, a novel defect detection approach is proposed based on improved K-nearest neighbor (KNN) and Euclidean clustering segmentation. Firstly, an improved voxel density strategy for KNN is proposed to speed up the effect for point filtering. Then, the improved clustering segmentation strategy is applied to distinguish point clouds with defect features. The outline fitting algorithm based on the least square method is applied to determine geometric features of each surface defect which are used to classify defect types. Furthermore, experimental results show that the proposed surface defect detection method reaches 99.2% accuracy and 35.3-ms average time consumption for data processing. Finally, an industrial application example of lithium battery production is demonstrated, which meets the requirements of industrial application. All these reports exhibited that the industrial visual inspection system with rapid measurement is an effective method and guarantees for accelerating industrial production and manufacturing in the future.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3