Defects Detection of Lithium-Ion Battery Electrode Coatings Based on Background Reconstruction and Improved Canny Algorithm

Author:

Wang Xianju1,Liu Shanhui1ORCID,Zhang Han1,Li Yinfeng2,Ren Huiran1

Affiliation:

1. Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China

2. Shaanxi Beiren Printing Machinery Co., Ltd., Weinan 714000, China

Abstract

Aiming to address the problems of uneven brightness and small defects of low contrast on the surface of lithium-ion battery electrode (LIBE) coatings, this study proposes a defect detection method that combines background reconstruction with an enhanced Canny algorithm. Firstly, we acquire and pre-process the electrode coating image, considering the characteristics of the electrode coating process and defects. Secondly, background reconstruction and the difference method are introduced to achieve the rough localization of coating defects. Furthermore, the image with potential defects undergoes enhancement through improved Gamma correction, and the PSO-OTSU algorithm with adaptive searching is applied to determine the optimal segmentation. Finally, precise defect detection is accomplished using the improved Canny algorithm and morphological processing. The experimental results show that, compared with the maximum entropy method, the region growth method, and the traditional Canny algorithm, the algorithm in this paper has a higher segmentation accuracy for defects. It better retains defect edge features and provides a more accurate detection effect for defects like scratches, dark spots, bright spots, metal leakage, and decarburization, which are difficult to recognize on the background of coating areas of electrodes. The proposed method is suitable for the online real-time defect detection of LIBE coating defects in actual lithium-ion battery industrial production.

Funder

Key Research and Development Program of Shaanxi Province

Key Research and Development Program of Weinan City

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3