1. Afzal, W., Torkar, R., Feldt, R., Gorschek, T.: Genetic programming of cross-release fault count predictions in large and complex software projects. In: Chis, M. (ed.) Evolutionary Computation and Optimization Algorithms in Software Engineering; Application and Techniques. IGI Global, Hershey (2009, pp. 94–126). doi: 10.4018/978-1-61520-809-8.ch006
2. Arisholm, E., Briand, L.C., Johannessen, E.B.: A systematic and comprehensive investigation of methods to build and evaluate fault prediction models. J. Syst. Softw. 83(1), 2–17 (2010)
3. Briand, L., Melo, W., Wust, J.: Assessing the applicability of fault-proneness models across object-oriented software projects. IEEE Trans. Softw. Eng. 28(7), 706–720 (2002)
4. Chiu, T., Fang, D., Chen, J., Wang, Y., Jeris, C.: A robust and scalable clustering algorithm for mixed type attributes in large database environment. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA. ACM, New York (2001)
5. Cudney, E.A., Paryani, K., Ragsdell, K.M.: Applying the Mahalanobis–Taguchi system to vehicle handling. Concurr. Eng. 14, 343–354 (2006)