Classification Performance of Thresholding Methods in the Mahalanobis–Taguchi System

Author:

Ramlie Faizir,Muhamad Wan Zuki Azman WanORCID,Harudin Nolia,Abu Mohd Yazid,Yahaya HaryantiORCID,Jamaludin Khairur RijalORCID,Abdul Talib Hayati HabibahORCID

Abstract

The Mahalanobis–Taguchi System (MTS) is a pattern recognition tool employing Mahalanobis Distance (MD) and Taguchi Robust Engineering philosophy to explore and exploit data in multidimensional systems. The MD metric provides a measurement scale to classify classes of samples (Abnormal vs. Normal) and gives an approach to measuring the level of severity between classes. An accurate classification result depends on a threshold value or a cut-off MD value that can effectively separate the two classes. Obtaining a reliable threshold value is very crucial. An inaccurate threshold value could lead to misclassification and eventually resulting in a misjudgment decision which in some cases caused fatal consequences. Thus, this paper compares the performance of the four most common thresholding methods reported in the literature in minimizing the misclassification problem of the MTS namely the Type I–Type II error method, the Probabilistic thresholding method, Receiver Operating Characteristics (ROC) curve method and the Box–Cox transformation method. The motivation of this work is to find the most appropriate thresholding method to be utilized in MTS methodology among the four common methods. The traditional way to obtain a threshold value in MTS is using Taguchi’s Quadratic Loss Function in which the threshold is obtained by minimizing the costs associated with misclassification decision. However, obtaining cost-related data is not easy since monetary related information is considered confidential in many cases. In this study, a total of 20 different datasets were used to evaluate the classification performances of the four different thresholding methods based on classification accuracy. The result indicates that none of the four thresholding methods outperformed one over the others in (if it is not for all) most of the datasets. Nevertheless, the study recommends the use of the Type I–Type II error method due to its less computational complexity as compared to the other three thresholding methods.

Funder

Universiti Teknologi Malaysia, Universiti Malaysia Perlis, Universiti Malaysia Pahang, Universiti Tenaga Nasional

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

1. Optimal Feature Selection of Taguchi Character Recognition in the Mahalanobis-Taguchi System;Ramlie;Glob. J. Pure Appl. Math.,2016

2. On the generalised distance in statistics;Mahalanobis;Natl. Inst. Sci. India,1936

3. MAHALANOBIS-TAGUCHI SYSTEM FOR PATTERN RECOGNITION: A BRIEF REVIEW

4. Pattern Recognition Using Mahalanobis-Taguchi System on Connecting Rod through Remanufacturing Process: A Case Study

5. Criteria selection for an MBA programme based on the mahalanobis Taguchi system and the Kanri Distance Calculator

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3