Bilevel optimization for joint scheduling of production and energy systems

Author:

Leenders Ludger,Hagedorn Dörthe Franzisca,Djelassi Hatim,Bardow André,Mitsos Alexander

Abstract

AbstractEnergy-intensive production sites are often supplied with energy by on-site energy systems. Commonly, the scheduling of the systems is performed sequentially, starting with the scheduling of the production system. Often, the on-site energy system is operated by a different company than the production system. In consequence, the production and the energy system schedule their operation towards misaligned objectives leading in general to suboptimal schedules for both systems. To reflect the independent optimization with misaligned objectives, the scheduling problem of the production system can be formulated as a bilevel problem. We formulate the bilevel problem with mixed-integer decision variables in the upper and the lower level, and propose an algorithm to solve this bilevel problem based on the deterministic and global algorithm by Djelassi, Glass and Mitsos (J Glob Optim 75:341–392, 2019. https://doi.org/10.1007/s10898-019-00764-3) for bilevel problems with coupling equality constraints. The algorithm works by discretizing the independent lower-level variables. In the scheduling problem considered herein, the only coupling equality constraints are energy balances in the lower level. Since an intuitive distinction is missing between dependent and independent variables, we specialize the algorithm and add a procedure to identify independent variables to be discretized. Thereby, we preserve convergence guarantees. The performance of the algorithm is demonstrated in two case studies. In the case studies, the production system favors different technologies for the energy supply than the energy system. By solving the bilevel problem, the production system identifies an energy demand, which leads to minimal cost. Additionally, we demonstrate the benefits of solving the bilevel problem instead of solving the common integrated or sequential problem.

Funder

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Control and Optimization,Mechanical Engineering,Aerospace Engineering,Civil and Structural Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3