Production Scheduling Optimization during Thermoforming of Ring Forgings Based on Genetic Algorithms

Author:

Chen Yizhe,Xie Beichen,Ma HuijuanORCID,Wang Hui,Zhou Yulong,Chen Jie,Hua Lin

Abstract

In the aerospace industry, many important components are made of ring forgings with characteristics of multi-variety and multi-batch. Such components have many steps and complex parameters in the thermoforming process. The process orders are dynamic and time-varying, and, thus, optimizing the total production time and energy consumption is difficult. To solve the mentioned troublesome and time-consuming problem, this work transformed the workpiece’s required heating temperature and time index into the furnace temperature change and holding time index. Based on a genetic algorithm, an integrated production scheduling optimization of ring forging heating and model forming was established. The genetic algorithm for model improvement was optimized. The optimization objective was changed by using different fitness calculation methods. A multi-time simulation algorithm was designed to calculate each heating furnace’s time and furnace temperature. The proposed optimization method was used for a thermoforming process of ring forgings. When the optimization objective was designed to consider energy consumption and time consumption comprehensively, the average time saving was 6.93%, and the average energy saving was 12.99%. When the optimization objective was designed to prioritize energy consumption, the average time saving was 3.89%, and the average energy saving was 16.53%. When the optimization objective was designed to prioritize time consumption, the average time saving was 10.35%, and the average energy saving was 10.63%. Using the scheduling results for production, compared with the practical factory data, the errors in the simulation time and energy consumption were 2.4% and 1.6%. The results show that the scheduling efficiency of integrated thermoforming production is significantly improved by using this optimization model, and the simulation results have high reliability. The energy consumption of orders is greatly reduced, and the total production time is greatly shortened.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation Council of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3