Improving the efficiency of reinforcement learning for a spacecraft powered descent with Q-learning

Author:

Wilson CallumORCID,Riccardi AnnalisaORCID

Abstract

AbstractReinforcement learning entails many intuitive and useful approaches to solving various problems. Its main premise is to learn how to complete tasks by interacting with the environment and observing which actions are more optimal with respect to a reward signal. Methods from reinforcement learning have long been applied in aerospace and have more recently seen renewed interest in space applications. Problems in spacecraft control can benefit from the use of intelligent techniques when faced with significant uncertainties—as is common for space environments. Solving these control problems using reinforcement learning remains a challenge partly due to long training times and sensitivity in performance to hyperparameters which require careful tuning. In this work we seek to address both issues for a sample spacecraft control problem. To reduce training times compared to other approaches, we simplify the problem by discretising the action space and use a data-efficient algorithm to train the agent. Furthermore, we employ an automated approach to hyperparameter selection which optimises for a specified performance metric. Our approach is tested on a 3-DOF powered descent problem with uncertainties in the initial conditions. We run experiments with two different problem formulations—using a ‘shaped’ state representation to guide the agent and also a ‘raw’ state representation with unprocessed values of position, velocity and mass. The results show that an agent can learn a near-optimal policy efficiently by appropriately defining the action-space and state-space. Using the raw state representation led to ‘reward-hacking’ and poor performance, which highlights the importance of the problem and state-space formulation in successfully training reinforcement learning agents. In addition, we show that the optimal hyperparameters can vary significantly based on the choice of loss function. Using two sets of hyperparameters optimised for different loss functions, we demonstrate that in both cases the agent can find near-optimal policies with comparable performance to previously applied methods.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Control and Optimization,Mechanical Engineering,Aerospace Engineering,Civil and Structural Engineering,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrated entry guidance with no-fly zone constraint using reinforcement learning and predictor-corrector technique;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2024-03-01

2. Comparative Study on Vibration Control Using Reinforcement Learning;2023 10th International Conference on Recent Advances in Air and Space Technologies (RAST);2023-06-07

3. A preface to the special issue on optimization in space engineering;Optimization and Engineering;2022-12-28

4. Enabling intelligent onboard guidance, navigation, and control using reinforcement learning on near-term flight hardware;Acta Astronautica;2022-10

5. Reinforcement learning in spacecraft control applications: Advances, prospects, and challenges;Annual Reviews in Control;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3