Integrated entry guidance with no-fly zone constraint using reinforcement learning and predictor-corrector technique

Author:

Gao Yuan1,Zhou Rui1,Chen Jinyong1ORCID

Affiliation:

1. School of Automation Science and Electrical Engineering, Beihang University, Beijing, China

Abstract

This paper presents an integrated entry guidance law for hypersonic glide vehicles with no-fly zone constraint. Existing methods that employ predictor-corrector technique and lateral guidance logic for both guidance and avoidance, may have limitations in response time and maneuverability when facing sudden threats, because the guidance cycle is limited by computational efficiency and the bank angle magnitude cannot be adjusted according to the urgency of the avoidance. To overcome these challenges, the proposed method divides the entry process into safe flight stages and no-fly zone avoidance stages, and introduces reinforcement learning to develop an intelligent avoidance strategy for the latter. This division reduces the complexity of the learning problem by restricting the state space and increases the applicability in the presence of multiple no-fly zones. The trained avoidance strategy can directly output continuous bank angle command through a single forward calculation, considering both guidance and avoidance requirements. This enables the full utilization of the vehicle’s maneuverability and supports a high command update frequency to effectively handle threats. Additionally, a network trained via supervised learning is employed to generate reference commands, accelerating the training convergence of reinforcement learning. Simulation results demonstrate the effectiveness of the proposed guidance law, highlighting its high computational efficiency, command stability, and robustness. Importantly, the approach offers convenience in extending to multiple no-fly zones and accommodating vast initial state spaces.

Funder

The STI 2030-Major Projects

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3