Author:
Horita Tadayoshi,Takanami Itsuo,Akiba Masakazu,Terauchi Mina,Kanno Tsuneo
Publisher
Springer Berlin Heidelberg
Reference32 articles.
1. Horita, T., Takanami, I., Mori, M.: Learning algorithms which make multilayer neural networks multiple-weight-and-neuron-fault tolerant. IEICE Trans. Inf. Syst. E91-D(4), 1168–1175 (2008)
2. Horita, T., Takanami, I.: An FPGA-based multiple-weight-and-neuron-fault tolerant digital multilayer perceptron. Neurocomputing 99, 570–574 (2013). Elsevier
3. Phatak, D.S., Koren, I.: Complete and partial fault tolerance of feedforward neural nets. IEEE Trans. Neural Netw. 6(2), 446–456 (1995)
4. Fahlman, S.E., et al.: Neural nets learning algorithms and benchmarks database. Maintained by Fahlman, S.E., et al. at the Computer Science Department, Carnegie Mellon University
5. Nijhuis, J., Hoefflinger, B., van Schaik, A., Spaanenburg, L.: Limits to the fault-tolerance of a feedforward neural network with learning. In: Proceedings of International Symposium on FTCS, pp. 228–235 (1990)