Author:
Milanese Gian Carlo,Venema Yde
Publisher
Springer Berlin Heidelberg
Reference15 articles.
1. Afshari, B., Leigh, G.E.: On closure ordinals for the modal $$\mu $$-calculus. In: Computer Science Logic 2013 (CSL 2013). Leibniz International Proceedings in Informatics (LIPIcs), vol. 23, pp. 30–44. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013).
https://doi.org/10.4230/LIPIcs.CSL.2013.30
.
http://drops.dagstuhl.de/opus/volltexte/2013/4188
2. Afshari, B., Leigh, G.: Cut-free completeness for modal $$\mu $$-calculus. In: Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2017), pp. 1–12 (2017).
https://doi.org/10.1109/LICS.2017.8005088
3. Calude, C., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games in quasipolynomial time. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pp. 252–263 (2017).
https://doi.org/10.1145/3055399.3055409
4. Czarnecki, M.: How fast can the fixpoints in modal $$\mu $$-calculus be reached? In: Fixed Points in Computer Science 2010 (FICS 2010), pp. 35–39, August 2010.
https://hal.archives-ouvertes.fr/hal-00512377/document#page=36
5. D’Agostino, G., Hollenberg, M.: Logical questions concerning the $$\mu $$-calculus. J. Symb. Log. 65, 310–332 (2000)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献