Abstract
AbstractThere are some crucial critiques on scientific inquiry and “the” Scientific Method in current science education. Recent research literature is replete with arguments against inquiry’s legitimacy to be included in science classes, and it has even been abandoned from the Next Generation Science Standards. Critics of scientific inquiry in schools blame it to be a caricature of authentic inquiry suffering from five shortcomings: (1) knowledge becomes desocialized from its generative contexts, (2) scientific inquiry in schools suggests methodological monism favoring (3) a primacy of experimentation, (4) which portrays scientific inquiry as a knowledge automaton (5) raising an illusion of determination with regard to the generation of knowledge. This article argues for a reorientation of scientific inquiry in schools tentatively embracing “the” Scientific Method anew since critics appear not to sufficiently consider that scientific inquiry operates differently in schools from science. It will be shown that most critiques can be defused when untangling such an illegitimate mix-up of science proper with school science. It will be argued that current (and recent) descriptions of how science generates knowledge lack authoritative validity and should be fundamentally revisited. “The” Scientific Method will be shown to be a valid idealization that can serve as a frame of reference for introductory science classes. Still, it is understood that science education needs to extend beyond “the” Scientific Method if it is to prepare for science-related careers.
Funder
Pädagogische Hochschule Zürich
Publisher
Springer Science and Business Media LLC
Reference218 articles.
1. Abd-El-Khalick, F., BouJaoude, S., Duschl, R. A., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., & Tuan, H.-L. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397–419.
2. Abrahams, I., & Millar, R. (2008). Does Practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30(14), 1945–1969. https://doi.org/10.1080/09500690701749305 .
3. Akerson, V. L., & Hanuscin, D. L. (2007). Teaching nature of science through inquiry: Results of a 3-year professional development program. Journal of Research in Science Teaching, 44(5), 653–680.
4. Alberts, B. (2000). Some thoughts of a scientist on inquiry. In J. Minstrell & E. H. van Zee (Eds.), Inquiring into inquiry learning and teaching in science. (pp. 3–13). American Association for the Advancement of Science.
5. Alexakos, K. (2010). Teaching the practice of science, unteaching the “scientific method.” Science Scope, 33(9), 74–79.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献