1. Barbin, E. (1997). Histoire et enseignement des mathématiques: Pourquoi? Comment? Bulletin de l’Association Mathématique du Québec, XXXVII(1), 20–25.
2. Barnett, J. (2010). Abstract awakenings in algebra: Early group theory in the works of Lagrange, Cauchy, and Cayley. 90 page curricular module based on primary historical sources, suitable for use in undergraduate courses in Abstract Algebra. Available at Barnett et al. (2008).
3. Barnett, J., Bezhanishvili, G., Leung, H., Lodder, J., Pengelley, D., Pivkina, I., & Ranjan, D. (2008). Learning discrete mathematics and computer science via primary historical sources. http://www.cs.nmsu.edu/historical-projects .
4. Barnett, J., Bezhanishvili, G., Leung, H., Lodder, J., Pengelley, D., & Ranjan, D. (2004). Teaching discrete mathematics via primary historical sources. http://www.math.nmsu.edu/hist_projects .
5. Barnett, J., Bezhanishvili, G., Leung, H., Lodder, J., Pengelley, D., & Ranjan, D. (2009). Historical projects in discrete mathematics and computer science. In B. Hopkins (Ed.), Resources for yeaching discrete mathematics (pp. 165–274). Washington, DC: Mathematical Association of America.