Abstract
AbstractOxygen on its transport route from lung to tissue mitochondria has to cross several cell membranes. The permeability value of membranes for O2 (PO2), although of fundamental importance, is controversial. Previous studies by mostly indirect methods diverge between 0.6 and 125 cm/s. Here, we use a most direct approach by observing transmembrane O2 fluxes out of 100 nm liposomes at defined transmembrane O2 gradients in a stopped-flow system. Due to the small size of the liposomes intra- as well as extraliposomal diffusion processes do not affect the overall kinetics of the O2 release process. We find, for cholesterol-free liposomes, the unexpectedly low PO2 value of 0.03 cm/s at 35 °C. This PO2 would present a serious obstacle to O2 entering or leaving the erythrocyte. Cholesterol turns out to be a novel major modifier of PO2, able to increase PO2 by an order of magnitude. With a membrane cholesterol of 45 mol% as it occurs in erythrocytes, PO2 rises to 0.2 cm/s at 35 °C. This PO2 is just sufficient to ensure complete O2 loading during passage of erythrocytes through the lung’s capillary bed under the conditions of rest as well as maximal exercise.
Funder
deutsche forschungsgemeinschaft
Medizinische Hochschule Hannover (MHH)
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Cellular and Molecular Neuroscience,Pharmacology,Molecular Biology,Molecular Medicine
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献