1. Doina A D, Simone S. Using context to get novel recommendation in internet message streams. In: Proceedings of the 24th International Conference on World Wide Web. New York: ACM, 2015. 783–786
2. Cai Y, Leung H, Li Q, et al. Typicality-based collaborative filtering recommendation. IEEE Trans Knowl Data Eng, 2014, 26: 766–779
3. Erheng Z, Nathan L, Yue S, et al. Building discriminative user profiles for large-scale content recommendation. In: Proceedings of the the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2015. 2277–2286
4. Yang Z, Tang J, Zhang J, et al. Topic-level random walk through probabilistic model. In: Proceedings of Asia-Pacific Web Conference and Web-Age Information Management. Berlin: Springer-Verlag, 2009. 162–173
5. Wang C, Tang J, Sun J, et al. Dynamic social influence analysis through time-dependent factor graphs. In: Proceedings of the 2011 International Conference on Social Networks Analysis and Mining. New York: ACM, 2011. 239–246