Abstract
Abstract
Main conclusion
Transcriptome and biochemical analyses suggested that, while suppression of multiple flavonoids and anthocyanins occurs at least partially at the transcriptional level, increased biosynthesis of non-jasmonate phyto-oxylipins is likely controlled non-transcriptionally.
Abstract
Methyl jasmonate (MeJA) produced in plants can mediate their response to environmental stresses. Exogenous application of MeJA has also shown to activate signaling pathways and induce phytoalexin accumulation in many plant species. To understand how pomegranate plants respond biochemically to environmental stresses, metabolite analysis was conducted in pomegranate leaves subjected to MeJA application and revealed unique changes in hydrolyzable tannins, flavonoids, and phyto-oxylipins. Additionally, transcriptome and real-time qPCR analyses of mock- and MeJA-treated pomegranate leaves identified differentially expressed metabolic genes and transcription factors that are potentially involved in the control of hydrolyzable tannin, flavonoid, and phyto-oxylipin pathways. Molecular, biochemical, and bioinformatic characterization of the only lipoxygenase with sustained, MeJA-induced expression showed that it is capable of oxidizing polyunsaturated fatty acids, though not located in the subcellular compartment where non-jasmonate (non-JA) phyto-oxylipins were produced. These results collectively suggested that while the broad suppression of flavonoids and anthocyanins is at least partially controlled at the transcriptional level, the induced biosynthesis of non-JA phyto-oxylipins is likely not regulated transcriptionally. Overall, a better understanding of how pomegranate leaves respond to environmental stresses will not only promote plant health and productivity, but also have an impact on human health as fruits produced by pomegranate plants are a rich source of nutritional compounds.
Funder
Science and Technology Commission of Shanghai Municipality
Special Fund for Scientific Research of Shanghai Landscaping and City Appearance Administrative Bureau
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献