Abstract
Abstract
Main conclusion
In Brassica rapa, the epigenetic modifier BraA.CLF orchestrates flowering by modulating H3K27me3 levels at the floral integrator genes FT, SOC1, and SEP3, thereby influencing their expression.
Abstract
CURLY LEAF (CLF) is the catalytic subunit of the plant Polycomb Repressive Complex 2 that mediates the trimethylation of histone H3 lysine 27 (H3K27me3), an epigenetic modification that leads to gene silencing. While the function of CURLY LEAF (CLF) has been extensively studied in Arabidopsis thaliana, its role in Brassica crops is barely known. In this study, we focused on the Brassica rapa homolog of CLF and found that the loss-of-function mutant braA.clf-1 exhibits an accelerated flowering together with pleiotropic phenotypic alterations compared to wild-type plants. In addition, we carried out transcriptomic and H3K27me3 genome-wide analyses to identify the genes regulated by BraA.CLF. Interestingly, we observed that several floral regulatory genes, including the B. rapa homologs of FT, SOC1 and SEP3, show reduced H3K27me3 levels and increased transcript levels compared to wild-type plants, suggesting that they are direct targets of BraA.CLF and key players in regulating flowering time in this crop. In addition, the results obtained will enhance our understanding of the epigenetic mechanisms regulating key developmental traits and will aid to increase crop yield by engineering new Brassica varieties with different flowering time requirements.
Funder
Agencia Estatal de Investigación
Ministerio de Economía y Competitividad
Consejo Superior de Investigaciones Cientificas
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献