BAPID suppresses the inhibition of BRM on Di19‐PR module in response to drought

Author:

Liu Nian1,Hu Zhiyong1,Zhang Liang1,Yang Qian2,Deng Linbin1,Terzaghi William3,Hua Wei14,Yan Mingli2,Liu Jing14,Zheng Ming1ORCID

Affiliation:

1. Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs Wuhan 430062 China

2. Crop Research Institute, Hunan Academy of Agricultural Sciences, Yuelushan Laboratory Changsha 410125 China

3. Department of Biology Wilkes University Wilkes‐Barre Pennsylvania USA

4. Hubei Hongshan Laboratory Wuhan 430070 China

Abstract

SUMMARYDrought is one of the most important abiotic stresses, and seriously threatens plant development and productivity. Increasing evidence indicates that chromatin remodelers are pivotal for plant drought response. However, molecular mechanisms of chromatin remodelers‐mediated plant drought responses remain obscure. In this study, we found a novel interactor of BRM called BRM‐associated protein involved in drought response (BAPID), which interacted with SWI/SNF chromatin remodeler BRM and drought‐induced transcription factor Di19. Our findings demonstrated that BAPID acted as a positive drought regulator since drought tolerance was increased in BAPID‐overexpressing plants, but decreased in BAPID‐deficient plants, and physically bound to PR1, PR2, and PR5 promoters to mediate expression of PR genes to defend against dehydration stress. Genetic approaches demonstrated that BRM acted epistatically to BAPID and Di19 in drought response in Arabidopsis. Furthermore, the BAPID protein‐inhibited interaction between BRM and Di19, and suppressed the inhibition of BRM on the Di19‐PR module by mediating the H3K27me3 deposition at PR loci, thus changing nucleosome accessibility of Di19 and activating transcription of PR genes in response to drought. Our results shed light on the molecular mechanism whereby the BAPID‐BRM‐Di19‐PRs pathway mediates plant drought responses. We provide data improving our understanding of chromatin remodeler‐mediated plant drought regulation network.

Funder

Natural Science Foundation of Hubei Province

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3