Abstract
Abstract
Main conclusion
The dormancy release in Avena fatua caryopses was associated with a reduction in the ABA content in embryos, coleorhiza and radicle. The coleorhiza proved more sensitive to KAR1 and less sensitive to ABA than the radicle. The inability of dormant caryopses and ABA-treated non-dormant caryopses to complete germination is related to inhibition and delayed of cell-cycle activation, respectively.
Abstract
As freshly harvested Avena fatua caryopses are dormant at 20 °C, they cannot complete germination; the radicle is not able to emerge. Both karrikin 1 (KAR1) and dry after-ripening release dormancy, enabling the emergence of, first, the coleorhiza and later the radicle. The after-ripening removes caryopse sensitivity to KAR1 and decreases the sensitivity to abscisic acid (ABA). The coleorhiza was found to be more sensitive to KAR1, and less sensitive to ABA, than radicles. Effects of KAR1 and after-ripening were associated with a reduction of the embryo’s ABA content during caryopsis germination. KAR1 was found to decrease the ABA content in the coleorhiza and radicles. Germination of after-ripened caryopses was associated with the progress of cell-cycle activation before coleorhiza emergence. Inhibition of the germination completion due to dormancy or treating the non-dormant caryopses with ABA was associated with a total and partial inhibition of cell-cycle activation, respectively.
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Adkins SW, Peters NCB (2001) Smoke derived from burnt vegetation stimulates germination of arable weeds. Seed Sci Res 11:213–222
2. Adkins SW, Loewen M, Symons SJ (1986) Variations within pure lines of wild oat (Avena fatua L.) in relation to degree of primary dormancy. Weed Sci 34:859–864
3. Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A (2013) ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci 4:63
4. Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F (2009) Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol 150:1006–1021
5. Barrero JM, Jacobsen JV, Talbot MJ, White RG, Swain SM, Garvin DF, Gubler F (2012) Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon. New Phytol 193:376–386
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献