Editing of phosphatidic acid and phosphatidylethanolamine by acyl-CoA: lysophospholipid acyltransferases in developing Camelina sativa seeds

Author:

Klińska Sylwia,Jasieniecka-Gazarkiewicz KatarzynaORCID,Demski Kamil,Banaś Antoni

Abstract

Abstract Main conclusions The main source of polyunsaturated acyl-CoA in cytoplasmic acyl-CoA pool of Camelina sativa seeds are fatty acids derived from phosphatidylcholine followed by phosphatidic acid. Contribution of phosphatidylethanolamine is negligible. Abstract While phosphatidylethanolamine (PE) is the second most abundant phospholipid, phosphatidic acid (PA) only constitutes a small fraction of C. sativa seeds’ polar lipids. In spite of this, the relative contribution of PA in providing fatty acids for the synthesis of acyl-CoA, supplying cytosolic acyl-CoA pool seems to be much higher than the contribution of PE. Our data indicate that up to 5% of fatty acids present in mature C. sativa seeds are first esterified with PA, in comparison to 2% first esterified with PE, before being transferred into acyl-CoA pool via backward reactions of either acyl-CoA:lysophosphatidic acid acyltransferases (CsLPAATs) or acyl-CoA:lysophoshatidylethanolamine acyltransferases (CsLPEATs). Those acyl-CoAs are later reused for lipid biosynthesis or remodelling. In the forward reactions both aforementioned acyltransferases display the highest activity at 30 °C. The spectrum of optimal pH differs for both enzymes with CsLPAATs most active between pH 7.5–9.0 and CsLPEATs between pH 9.0 to 10.0. Whereas addition of magnesium ions stimulates CsLPAATs, calcium and potassium ions inhibit them in concentrations of 0.05–2.0 mM. All three types of ions inhibit CsLPEATs activity. Both tested acyltransferases present the highest preferences towards 16:0-CoA and unsaturated 18-carbon acyl-CoAs in forward reactions. However, CsLPAATs preferentially utilise 18:1-CoA and CsLPEATs preferentially utilise 18:2-CoA while catalysing fatty acid remodelling of PA and PE, respectively.

Funder

National Science Centre (NCN), Poland

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3