Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm

Author:

Bafor M1,Smith M A1,Jonsson L1,Stobart K1,Stymne S1

Affiliation:

1. Department of Plant Physiology, Swedish University of Agricultural Sciences, P.O. Box 7047, S-750 07 Uppsala, Sweden

Abstract

Microsomal membrane preparations from the developing endosperm of castor bean (Ricinus communis) catalysed the transfer of oleate from [14C]oleoyl-CoA to phosphatidylcholine (PtdCho). In the presence of NADH, radioactive ricinoleate (12-hydroxyoctadec-9-enoate) was synthesized from [14C]oleate, and this was largely recovered in PtdCho and as free fatty acid. The addition of unlabelled ricinoleoyl-CoA to these incubation mixtures did not increase the low [14C]ricinoleate concentration found in the acyl-CoA fraction nor decrease the [14C]ricinoleate concentration in PtdCho and free fatty acid, and thus no evidence was obtained for a hydroxylation with oleoyl-CoA as a substrate. The addition of NADH, necessary for the formation of ricinoleate, caused a decrease of the total radioactivity in PtdCho with a corresponding increase in the amount of label in free ricinoleic acid. This increase was due to the action of a phospholipase A, which released ricinoleic acid but not oleic acid from PtdCho. Such a phospholipase activity, attacking ricinoleoyl-PtdCho but not oleoyl-PtdCho, was also demonstrated in microsomal preparations from developing cotyledons of safflower and oil-seed rape. An analysis of the acyl groups at different positions in microsomal PtdCho of castor bean showed that ricinoleate was almost entirely associated with position sn-2. Likewise the [14C]ricinoleate in [14C]PtdCho formed after incubations with microsomal preparations with NADH and [14C]oleoyl-CoA resided in position sn-2 with none in position sn-1. In contrast, the [14C]linoleate formed by desaturation of [14C]oleoyl-PtdCho was present at both positions. In the presence of ATP, CoA and Mg2+, the ricinoleate acid released from PtdCho was activated to ricinoleoyl-CoA. The ricinoleoyl-CoA was an efficient acyl donor in the acylation of glycerol 3-phosphate (Gro3P) to yield phosphatidic acid and triacylglycerols. In microsomal preparations incubated with an equimolar mixture of [14C]oleoyl-CoA and [14C]ricinoleoyl-CoA in the presence of Gro3P, only a minor amount of [14C]ricinoleate entered PtdCho, and this was believed to be via the exchange of phosphocholine groups between a diacylglycerol pool and the PtdCho. On the basis of our results, a scheme of ricinoleate formation and its incorporation into triacylglycerols in castor-bean endosperm is proposed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3