Abstract
AbstractA passively self-tuning resonator configuration is presented in this study. Under certain operating conditions, a self-resonating system has the capability to passively adjust dynamical characteristics until the whole system becomes resonant. A clamped–clamped beam with an attached mass sliding along the beam and a slight gap that, under a harmonic input excitation and well-defined operating regime, can lead to the increase in voltage amplitude generated by the piezo-harvester attached to this structure may be an example of such a system. Taking into account such behavior of the system, the paper is focused on determining the distributed-parameters of the electromechanical system versus a different slider position on the beam in modal coordinates. The obtained simulation results, considering the homogenous model of an MFC element for the desired slider locations, showed how the width of the gap between the slider and the beam additionally influences the voltage generated by the piezo-harvester. Experimental tests carried out on the real stand with an EHE301 module and the designed SSHI interface circuit allowed to verify the numerical results and also showed the influence on the resistive load connected to the system for an improvement of the considered energy harvesting system parameters.
Funder
Bialystok University of Technology
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Computational Mechanics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献