1. Barrett, J., & Battista, M. T. (2011). Comparing learning trajectories and levels of sophistication in the development of students’ reasoning about length: A case study. In J. Confrey, A. P. Maloney, & K. Nguyen (Eds.), Learning over time: Learning trajectories in mathematics education. New York: Information Age Publishing (in press).
2. Barrett, J. E., Clements, D. H., Klanderman, D., Pennisi, S.-J., & Polaki, M. V. (2006). Students’ coordination of geometric reasoning and measuring strategies on a fixed perimeter task: Developing mathematical understanding of linear measurement. Journal for Research in Mathematics Education, 37, 187–221.
3. Barrett, J. E., Clements, D. H., Sarama, J., Cullen, C., McCool, J., Witkowski-Rumsey, C., & Klanderman, D. (2011). Evaluating and improving a learning trajectory for linear measurement in elementary grades 2 and 3: A longitudinal study. Mathematical Thinking and Learning (in press).
4. Bartsch, K., & Wellman, H. M. (1988). Young children’s conception of distance. Developmental Psychology, 24(4), 532–541.
5. Clements, D. H. (1999). Teaching length measurement: Research challenges. School Science and Mathematics, 99(1), 5–11.