Author:
Mabogoane Melida,Augustyn Wilma,Tembu Vuyelwa J,Regnier Thierry,du Plooy Wilma
Abstract
Abstract
Introduction
The use of chemical fungicides to combat disease has made a substantial contribution to food quality and security. Nonetheless, their applications have been limited due to environmental and health concerns, unaffordability, and the fact that pathogens have acquired resistance to some of these fungicides. Alternative eco-friendly and safe control methods should be explored. The current study investigated the influence of citrus rind phenolic compounds against Phyllosticta citricarpa infection by metabolic profiling of two citrus cultivars with varying degrees of susceptibility to infection.
Methods
Chromatographic data obtained by Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC) was subjected to multivariate data analysis to identify biomarkers associated with the tolerant cultivar. The identified biomarkers were tested in vitro against P. citricarpa.
Results
Seville oranges, a tolerant cultivar, displayed higher levels of phenolic content and lower total sugar content, that are both associated with lower susceptibility to citrus black spot infection. The generated Principal Component Analysis (PCA) and Orthogonal Projection to Latent Structures-Discriminant Analysis (OPLS-DA) models gave an overview of the data set and identified components that may be responsible for the differences in susceptibility between the two cultivars. Candidate biomarkers associated with tolerance were identified as naringin, neoeriocitrin, bruteiridin, melitidin, and lucenin-2.
Conclusion
Naringin, a major candidate biomarker was able to inhibit the growth of the pathogen at 10 000 ppm.
Funder
Tshwane University of Technology
Publisher
Springer Science and Business Media LLC