Methods for estimating insulin resistance from untargeted metabolomics data

Author:

Hsu Fang-Chi,Palmer Nicholette D.,Chen Shyh-Huei,Ng Maggie C. Y.,Goodarzi Mark O.,Rotter Jerome I.,Wagenknecht Lynne E.,Bancks Michael P.,Bergman Richard N.,Bowden Donald W.ORCID

Abstract

Abstract Context Insulin resistance is associated with multiple complex diseases; however, precise measures of insulin resistance are invasive, expensive, and time-consuming. Objective Develop estimation models for measures of insulin resistance, including insulin sensitivity index (SI) and homeostatic model assessment of insulin resistance (HOMA-IR) from metabolomics data. Design Insulin Resistance Atherosclerosis Family Study (IRASFS). Setting Community based. Participants Mexican Americans (MA) and African Americans (AA). Main outcome Estimation models for measures of insulin resistance, i.e. SI and HOMA-IR. Results Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net regression were used to build insulin resistance estimation models from 1274 metabolites combined with clinical data, e.g. age, sex, body mass index (BMI). Metabolite data were transformed using three approaches, i.e. inverse normal transformation, standardization, and Box Cox transformation. The analysis was performed in one MA recruitment site (San Luis Valley, Colorado (SLV); N = 450) and tested in another MA recruitment site (San Antonio, Texas (SA); N = 473). In addition, the two MA recruitment sites were combined and estimation models tested in the AA recruitment sample (Los Angeles, California; N = 495). Estimated and empiric SI were correlated in the SA (r2 = 0.77) and AA (r2 = 0.74) testing datasets. Further, estimated and empiric SI were consistently associated with BMI, low-density lipoprotein cholesterol (LDL), and triglycerides. We applied similar approaches to estimate HOMA-IR with similar results. Conclusions We have developed a method for estimating insulin resistance with metabolomics data that has the potential for application to a wide range of biomedical studies and conditions.

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3