Microwave induced in-situ formation of SiC nanowires on SiCNO ceramic aerogels with excellent electromagnetic wave absorption performance

Author:

Yuan Keke,Han Daoyang,Liang Junfang,Zhao Wanyu,Li Mingliang,Zhao Biao,Liu Wen,Lu Hongxia,Wang Hailong,Xu Hongliang,Shao Gang,Zhang Rui

Abstract

AbstractElectromagnetic absorption (EMA) materials with light weight and harsh environmental robustness are highly desired and crucially important in the stealth of high-speed vehicles. However, meeting these two requirements is always a great challenge, which excluded the most attractive lightweight candidates, such as carbon-based materials. In this study, SiCnw-reinforced SiCNO (SiCnw/SiCNO) composite aerogels were fabricated through the in-situ growth of SiCnw in polymer-derived SiCNO ceramic aerogels by using catalyst-assisted microwave heating at ultra-low temperature and in short time. The phase composition, microstructure, and EMA property of the SiCnw/SiCNO composite aerogels were systematically investigated. The results indicated that the morphology and phase composition of SiCnw/SiCNO composite aerogels can be regulated easily by varying the microwave treatment temperature. The composite aerogels show excellent EMA property with minimum reflection loss of −23.9 dB@13.8 GHz, −26.5 dB@10.9 GHz, and −20.4 dB@14.5 GHz and the corresponding effective bandwidth of 5.2 GHz, 3.2 GHz, and 4.8 GHz at 2.0 mm thickness for microwave treatment at 600 °C, 800 °C, and 1000 °C, respectively, which is much better than that of SiCN ceramic aerogels. The superior EMA performance is mainly attributed to the improved impedance matching, multi-reflection, multi-interfacial polarization, and micro current caused by migration of hopping electrons.

Publisher

Springer Science and Business Media LLC

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3