Unique sandwich design of high-efficiency heat-conducting phosphor-in-glass film for high-quality laser-driven white lighting

Author:

Peng Yang,Yu Zikang,Zhao Jiuzhou,Wang Qing,Liu Jiaxin,Sun Bo,Mou Yun,Chen Mingxiang

Abstract

AbstractMulti-color phosphor-in-glass (PiG) film has been considered as a promising color converter in high-quality laser lighting owing to its outstanding merits of phosphor versatility, tunable luminescence, and simple preparation. However, the opto-thermal properties of PiG film are severely affected by the photon reabsorption and backward scattering of phosphor structure and the heat conduction of substrate. Herein, a unique sandwich design of phosphor structure was introduced in the multi-color PiG film for high-quality laser lighting. By elaborately synthesizing the borosilicate glass with low glass transition temperature (Tg), similar expansion coefficient, and high refractive index (RI), the sandwiched PiGs were prepared by sintering (~600 °C) broadband green and red phosphor glass films on the double sides of sapphire. The green and red PiG films were tightly coated on the sapphire with no delamination and maintained higher luminescence intensity than raw phosphors at high temperatures. By simultaneously coupling photon reabsorption and backward scattering, the sandwiched green PiG film—sapphire—red PiG film (G—S—R PiG) yields a high-quality white light with a high luminous efficacy of 163 lm/W and an excellent color rendering index (CRI) of 85.4 under a laser power of 2.4 W, which are the best comprehensive results yet reported. Benefiting from the ingenious sandwich design with heat-conducting sapphire and thin PiG films, the G—S—R PiG displays low working temperatures (< 200 °C) under high-power laser excitation. This work reveals the role of sandwiched phosphor structure in photon loss and heat dissipation, which provides a new strategy to design PiG films for high-quality laser lighting.

Publisher

Tsinghua University Press

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3