Author:
Guo Lei,Li Bowen,Cheng Yuxian,Wang Lu
Abstract
AbstractSc was doped into Gd2Zr2O7 for expanding the potential for thermal barrier coating (TBC) applications. The solid solution mechanism of Sc in the Gd2Zr2O7 lattice, and the mechanical and thermophysical properties of the doped Gd2Zr2O7 were systematically studied by the first-principles method, based on which the Sc doping content was optimized. Additionally, Sc-doped Gd2Zr2O7 TBCs with the optimized composition were prepared by air plasma spraying using YSZ as a bottom ceramic coating (Gd-Sc/YSZ TBCs), and their sintering behavior and thermal cycling performance were examined. Results revealed that at low Sc doping levels, Sc has a large tendency to occupy the lattice interstitial sites, and when the doping content is above 11.11 at%, Sc substituting for Gd in the lattice becomes dominant. Among the doped Gd2Zr2O7, the composition with 16.67 at% Sc content has the lowest Pugh’s indicator (G/B) and the highest Poisson ratio (σ) indicative of the highest toughness, and the decreasing trends of Debye temperature and thermal conductivity slow down at this composition. By considering the mechanical and thermophysical properties comprehensively, the Sc doping content was optimized to be 16.67 at%. The fabricated Gd-Sc coatings remain phase and structural stability after sintering at 1400 °C for 100 h. Gd-Sc/YSZ TBCs exhibit excellent thermal shock resistance, which is related to the good thermal match between Gd-Sc and YSZ coatings, and the buffering effect of the YSZ coating during thermal cycling. These results revealed that Sc-doped Gd2Zr2O7 has a high potential for TBC applications, especially for the composition with 16.67 at% Sc content.
Publisher
Tsinghua University Press
Subject
Ceramics and Composites,Electronic, Optical and Magnetic Materials
Reference71 articles.
1. Guo H, Gong S, Xu H. Research progress on new high/ultra-high-temperature thermal barrier coatings and processing technologies. Acta Aeronaut Astronaut Sin 2014, 35: 2722–2732.
2. Vaßen R, Jarligo MO, Steinke T, et al. Overview on advanced thermal barrier coatings. Surf Coat Technol 2010, 205: 938–942.
3. Li DX, Jiang P, Gao RH, et al. Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion. J Adv Ceram 2021, 10: 551–564.
4. Kumar V, Balasubramanian K. Progress update on failure mechanisms of advanced thermal barrier coatings: A review. Prog Org Coat 2016, 90: 54–82.
5. Mauer G, Jarligo MO, Mack DE, et al. Plasma-sprayed thermal barrier coatings: New materials, processing issues, and solutions. J Therm Spray Technol 2013, 22: 646–658.
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献