Author:
Liu Bing,Sun Jia,Zhou Lei,Zhang Pei,Yan Chenxin,Fu Qiangang
Abstract
AbstractCore-shell structured SiC@SiO2 nanowires and Si@SiO2 nanowires were prepared on the surface of carbon/carbon (C/C) composites by a thermal evaporation method using SiO powders as the silicon source and Ni(NO3)2 as the catalyst. The average diameters of SiC@SiO2 nanowires and Si@SiO2 nanowires are about 145 nm, and the core-shell diameter ratios are about 0.41 and 0.53, respectively. The SiO2 shells of such two nanowires resulted from the reaction between SiO and CO and the reaction of SiO itself, respectively, based on the model analysis. The growth of these two nanowires conformed to the vapor—liquid—solid (VLS) mode. In this mode, CO played an important role in the growth of nanowires. There existed a critical partial pressure of CO (pC) determining the microstructure evolution of nanowires into whether SiC@SiO2 or Si@SiO2. The value of pC was calculated to be 4.01×10−15 Pa from the thermodynamic computation. Once the CO partial pressure in the system was greater than the pC, SiO tended to react with CO, causing the formation of SiC@SiO2 nanowires. However, the decomposition of SiO played a predominant role and the products mainly consisted of Si@SiO2 nanowires. This work may be helpful for the regulation of the growth process and the understanding of the growth mechanism of silicon-based nanowires.
Publisher
Tsinghua University Press
Subject
Ceramics and Composites,Electronic, Optical and Magnetic Materials
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献