Tunnel elasticity enhancement effect of 3D submicron ceramics (Al2O3, TiO2, ZrO2) fiber on polydimethylsiloxane (PDMS)

Author:

Hao Yuxiu,Xie Junwei,Xu Bingqing,Hu Bingkun,Zheng Yunpeng,Shen Yang

Abstract

AbstractSome polymers are flexible, foldable, and wearable. Structural—functional composite is fabricated by adding inorganic fillers with functional properties. Up to date, compared with the polymer matrix, the composite prepared by polymer-inorganic fillers has lower flexibility, higher brittleness, and higher modulus of elasticity. In this paper, three-dimensional (3D) net-shaped submicron α-Al2O3, orthorhombic ZrO2, and rutile TiO2 fiber were fabricated by solution blowing spinning on a large scale. On the contrary, the elastic modulus (E) of the composite prepared by this 3D ceramic fiber was greatly reduced, and the flexibility of the composite was higher than that of the polymer matrix. When the strain was 75%, the E of the 3D net-shaped Al2O3 fiber-polydimethylsiloxane (PDMS) composite was 20% lower than that of PDMS. When the strain was 78%, the E of the 3D net-shaped TiO2 fiber-PDMS and 3D net-shaped ZrO2 fiber-PDMS composites decreased by 20% and 25%, respectively. This abnormal effect, namely the tunnel elastic enhancement effect, has great practical significance. In all-solid-state lithium-ion batteries, the composite inhibits lithium dendrite growth and the 3D inorganic network contributes to lithium ion transport. It is possible to promote the industrial production of low-cost and large-scale flexible solid-state lithium-ion batteries and it can enhance the energy storage density of energy storage materials. This novel idea also has bright prospects in flexible electronic materials.

Publisher

Springer Science and Business Media LLC

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3