Identification of key gene networks controlling vernalization development characteristics of Isatis indigotica by full-length transcriptomes and gene expression profiles

Author:

Wang Pan,Liu Dong,Yang Fu-Hong,Ge Hui,Zhao Xin,Chen Hong-Gang,Du TaoORCID

Abstract

AbstractIsatis indigotica Fort., as a common Chinese medicinal raw material, will lose its medicinal value if it blooms early, so it is highly valuable to clarify the induction mechanism of the vernalization of I. indigotica at low temperature. In this study, the concentrations of soluble sugar, proline, glutathione and zeatin in two germplasms of I. indigotica with different degrees of low temperature tolerance (Y1 and Y2) were determined at 10 days, 20 days and 30 days of low-temperature treatment, and the full-length transcriptome of 24 samples was sequenced by Nanopore sequencing with Oxford Nanopore Technologies (ONT). After that, the data of transcripts involved in the vernalization of I. indigotica at low temperature were obtained, and these transcripts were identified using weighted gene co-expression network analysis (WGCNA). The results revealed the massive accumulation of soluble sugar and proline in Y1 and Y2 after low temperature induction. A total of 18,385 new transcripts, 6168 transcription factors and 470 lncRNAs were obtained. Differential expression analysis showed that gibberellin, flavonoids, fatty acids and some processes related to low temperature response were significantly enriched. Eight key transcripts were identified by WGCNA, among which ONT.14640.1, ONT.9119.1, ONT.13080.2 and ONT.16007.1 encodes a flavonoid transporter, 9-cis-epoxycarotenoid dioxygenase 3 (NCED3), growth factor gene and L-aspartate oxidase in plants, respectively. It indicated that secondary metabolites such as hormones and flavonoids play an important role in the vernalization of I. indigotica. qRT-PCR proved the reliability of transcriptome results. These results provide important insights on the low-temperature vernalization of I. indigotica, and provide a research basis for analyzing the vernalization mechanism of I. indigotica.

Funder

China Agriculture Research System of MOF and MARA

Study on Selection and Breeding Methods and Planting Quality Control Techniques of Excellent Varieties of Isatis indigotica

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Molecular Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3