Blackberry synthetic seeds storage: effects of temperature, time, and sowing substrate

Author:

Regni LucaORCID,Micheli Maurizio,Pino Alberto Marco Del,Facchin Simona Lucia,Rabica Emanuele,Camilloni Leonardo,Cesarini Arianna,Proietti Primo

Abstract

AbstractIn vitro propagation, is becoming the predominant method for blackberry propagation due to its advantages compared to agamic traditional propagation methods. Synthetic seed technology represents a promising approach to further enhance the productivity of in vitro propagation facilitating the exchange of plant materials among laboratories and contributing to germplasm conservation efforts. This study aimed to establish an optimal protocol for the storage and sowing of synthetic blackberry seeds obtained through the encapsulation of clump bases. The synthetic seeds were sown without storage (Control) and after storage periods of 30, 60, and 120 days at 4 °C and 25 °C in the dark, in three different substrates (agarised, perlite, and potting). After forty-five days from sowing viability, regeneration rate, shoot and root numbers and lengths, as well as fresh and dry weights of the plantlets, were assessed. Results indicated that agarised substrate consistently exhibited favourable outcomes, with sustained regeneration rates and robust plantlet development even after prolonged storage at 4 °C. Synthetic seeds sown in perlite and potting substrates demonstrated enhanced regeneration rates following storage at 4 °C for 60 and 120 days. On the contrary, storage at 25 °C resulted in a notable decline in regeneration rate, highlighting its inadequacy for blackberry synthetic seed conservation purposes. These findings underscore the importance of sowing substrate selection and storage temperature in optimizing the storage and sowing protocols for synthetic blackberry seeds.

Funder

Università degli Studi di Perugia

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3