Towards automated detection of hyperhydricity in plant in vitro culture

Author:

Bethge HansORCID,Mohammadi Nakhjiri Zahra,Rath ThomasORCID,Winkelmann TraudORCID

Abstract

AbstractHyperhydricity (HH) is one of the most important physiological disorders that negatively affects various plant tissue culture techniques. The objective of this study was to characterize optical features to allow an automated detection of HH. For this purpose, HH was induced in two plant species, apple and Arabidopsis thaliana, and the severity was quantified based on visual scoring and determination of apoplastic liquid volume. The comparison between the HH score and the apoplastic liquid volume revealed a significant correlation, but different response dynamics. Corresponding leaf reflectance spectra were collected and different approaches of spectral analyses were evaluated for their ability to identify HH-specific wavelengths. Statistical analysis of raw spectra showed significantly lower reflection of hyperhydric leaves in the VIS, NIR and SWIR region. Application of the continuum removal hull method to raw spectra identified HH-specific absorption features over time and major absorption peaks at 980 nm, 1150 nm, 1400 nm, 1520 nm, 1780 nm and 1930 nm for the various conducted experiments. Machine learning (ML) model spot checking specified the support vector machine to be most suited for classification of hyperhydric explants, with a test accuracy of 85% outperforming traditional classification via vegetation index with 63% test accuracy and the other ML models tested. Investigations on the predictor importance revealed 1950 nm, 1445 nm in SWIR region and 415 nm in the VIS region to be most important for classification. The validity of the developed spectral classifier was tested on an available hyperspectral image acquisition in the SWIR-region.

Funder

Bundesanstalt für Landwirtschaft und Ernährung

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Subject

Horticulture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3