Abstract
Abstract
Agitated shoot cultures of two aronias, Aronia melanocarpa (Michx.) Elliott and Aronia arbutifolia (L.) Pers., were maintained on Murashige & Skoog medium (1 mg/l BA and 1 mg/l NAA), both with and without the addition of various biosynthetic precursors of phenolic acids and depsides (phenylalanine, cinnamic acid, benzoic acid and caffeic acid). Each substance was added in 5 concentrations (0.1–10 mmol/l), each concentration at two time points (at the beginning and on the 10th day of cultures). Twenty-four phenolic acids were determined in methanolic extracts of the biomasses collected after 20 days of growth cycles by means of HPLC method with DAD detection. The presence of seven compounds was confirmed in all the extracts—five depsides (neochlorogenic, chlorogenic, cryptochlorogenic, isochlorogenic and rosmarinic acids), and syringic and caffeic acids. The main metabolites in A. melanocarpa shoot extracts were isochlorogenic, chlorogenic and neochlorogenic acids (max. 249.88, 450.35, 192.16 mg/100 g DW). The main metabolites in A. arbutifolia shoot extracts were: chlorogenic, isochlorogenic and cryptochlorogenic acids (max. 361.60, 224.5, 526.2 mg/100 g DW). The largest total amounts of the compounds were confirmed in the cultures of both aronias after the addition of cinnamic acid (989.79 and 661.77 mg/100 g DW, respectively) and caffeic acid (854.99 and 1098.46 mg/100 g DW, respectively) at concentrations of 5 mmol/l on 10th day of growth cycles. These maximum amounts were 3.41, 3.42, 2.95 and 5.67 times higher, respectively, than in the control cultures. This is the first report documenting the high production of depsides in shoot cultures of black and red aronias after feeding with their biosynthetic precursors.
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184.
https://doi.org/10.1016/j.lfs.2003.09.047
2. Chand Meena M, Kesh Meena R, Patni V (2014) Effect of elicitor on quercetin production in cell cultures of Citrullus colocynthis (Linn.) Schrad. Pharma Innov 2:18–23
3. Charlwood B, Charlwood S, Molina-Tores J (1990) Accumulation of secondary compounds by organized plant cultures. In: Charlwood BV, Rhodes MJC (eds) Secondary products from plant tissue cultures. Clarendon Press, Oxford, pp 167–200
4. Chong J, Pierrel MA, Atanassova R et al (2001) Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors. Plant Physiol 125:318–328
5. Ekiert H, Czygan F-C (2005) Accumulation of biologically active furanocoumarins in agitated cultures of Ruta graveolens L. and Ruta graveolens ssp. divaricata (Tenore) Gams. Pharmazie 60:623–626