Light Can Induce Accumulation of Nutritional Antioxidants in Black Chokeberry Cell Suspension Culture

Author:

Krasteva Gergana1ORCID,Teneva-Angelova Tsvetanka1,Badjakov Ilian2ORCID,Dincheva Ivayla2ORCID,Georgiev Vasil1ORCID,Pavlov Atanas13ORCID

Affiliation:

1. Laboratory of Cell Biosystems, Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria

2. AgroBioInstitute, Agricultural Academy, 1164 Sofia, Bulgaria

3. Department of Analytical Chemistry and Physical Chemistry, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria

Abstract

Cultivation of plant cells under controlled conditions is a highly effective and fast developing technology that recently was considered as a branch of cellular agriculture. Cellular agriculture is a multidisciplinary approach for sustainable and renewable production of agricultural goods and raw materials at cellular, rather than organismal, level. However, in contrast to the rapid advance in development of cultured meat and precision fermentation, the production of nutritional supplements from plant cells is still in its infancy. One of the limiting factors, striating commercialization of plant cells for food production, is the low yields of target bioactive metabolites. In this work, the changes in phenolics, anthocyanins and exopolysaccharides accumulation during cultivation of Aronia melanocarpa (Michx.) Elliott cell suspension cultures in darknessor under illumination (16 light and 8 dark) were investigated. The data showed that the highest contents of total phenolics (8.17 ± 0.39 mg GAE/g DW), total anthocyanins (0.011 ± 0.001 mg cyanidin-3-glucoside equivalents/g DW) and antioxidant activities (DPPH—21.36 ± 0.29 µM TE/g DW; TEAC—10.08 ± 0.07 µM TE/g DW; FRAP—34.85 ± 1.47 µM TE/g DW; and CUPRAC—126.74 ± 9.15 µM TE/g DW) were achieved when the cells were grown under illumination (16 light and 8 dark). In contrast, when the culture was grown indarkness, the highest amounts of accumulated dry biomass (8.68 ± 0.35 g/L) and exopolysaccharides production (2.10 ± 0.07 g/L) were reached. The results demonstrated that light can be used as an affordable and highly effective factor to control the production of valuable antioxidants by black chokeberry cell suspension culture.

Funder

Bulgarian National Science Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3