Covid-19 epidemic in Italy: evolution, projections and impact of government measures

Author:

Sebastiani Giovanni,Massa Marco,Riboli Elio

Abstract

AbstractWe report on the Covid-19 epidemic in Italy in relation to the extraordinary measures implemented by the Italian Government between the 24th of February and the 12th of March. We analysed the Covid-19 cumulative incidence (CI) using data from the 1st to the 31st of March. We estimated that in Lombardy, the worst hit region in Italy, the observed Covid-19 CI diverged towards values lower than the ones expected in the absence of government measures approximately 7–10 days after the measures implementation. The Covid-19 CI growth rate peaked in Lombardy the 22nd of March and in other regions between the 24th and the 27th of March. The CI growth rate peaked in 87 out of 107 Italian provinces on average 13.6 days after the measures implementation. We projected that the CI growth rate in Lombardy should substantially slow by mid-May 2020. Other regions should follow a similar pattern. Our projections assume that the government measures will remain in place during this period. The evolution of the epidemic in different Italian regions suggests that the earlier the measures were taken in relation to the stage of the epidemic, the lower the total cumulative incidence achieved during this epidemic wave. Our analyses suggest that the government measures slowed and eventually reduced the Covid-19 CI growth where the epidemic had already reached high levels by mid-March (Lombardy, Emilia-Romagna and Veneto) and prevented the rise of the epidemic in regions of central and southern Italy where the epidemic was at an earlier stage in mid-March to reach the high levels already present in northern regions. As several governments indicate that their aim is to “push down” the epidemic curve, the evolution of the epidemic in Italy supports the WHO recommendation that strict containment measures should be introduced as early as possible in the epidemic curve.

Publisher

Springer Science and Business Media LLC

Subject

Epidemiology

Reference6 articles.

1. http://www.protezionecivile.gov.it/en/risk-activities/health-risk/emergencies/coronavirus.

2. https://github.com/pcm-dpc/COVID-19.

3. Bailey NTJ. The mathematical theory of infectious diseases and its applications. 2nd ed. New York: Hafner Press; 1975.

4. Gilks WR, Richardson S, Spiegelhalter D. Markov Chain Monte Carlo in practice. Boca Raton: CRC; 1995.

5. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, Reich NG, Lessler J. The incubation period of Coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. 2020;1:1. https://doi.org/10.7326/m20-0504.

Cited by 162 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3