Author:
Sebastiani Giovanni,Massa Marco,Riboli Elio
Abstract
AbstractWe report on the Covid-19 epidemic in Italy in relation to the extraordinary measures implemented by the Italian Government between the 24th of February and the 12th of March. We analysed the Covid-19 cumulative incidence (CI) using data from the 1st to the 31st of March. We estimated that in Lombardy, the worst hit region in Italy, the observed Covid-19 CI diverged towards values lower than the ones expected in the absence of government measures approximately 7–10 days after the measures implementation. The Covid-19 CI growth rate peaked in Lombardy the 22nd of March and in other regions between the 24th and the 27th of March. The CI growth rate peaked in 87 out of 107 Italian provinces on average 13.6 days after the measures implementation. We projected that the CI growth rate in Lombardy should substantially slow by mid-May 2020. Other regions should follow a similar pattern. Our projections assume that the government measures will remain in place during this period. The evolution of the epidemic in different Italian regions suggests that the earlier the measures were taken in relation to the stage of the epidemic, the lower the total cumulative incidence achieved during this epidemic wave. Our analyses suggest that the government measures slowed and eventually reduced the Covid-19 CI growth where the epidemic had already reached high levels by mid-March (Lombardy, Emilia-Romagna and Veneto) and prevented the rise of the epidemic in regions of central and southern Italy where the epidemic was at an earlier stage in mid-March to reach the high levels already present in northern regions. As several governments indicate that their aim is to “push down” the epidemic curve, the evolution of the epidemic in Italy supports the WHO recommendation that strict containment measures should be introduced as early as possible in the epidemic curve.
Publisher
Springer Science and Business Media LLC
Reference6 articles.
1. http://www.protezionecivile.gov.it/en/risk-activities/health-risk/emergencies/coronavirus.
2. https://github.com/pcm-dpc/COVID-19.
3. Bailey NTJ. The mathematical theory of infectious diseases and its applications. 2nd ed. New York: Hafner Press; 1975.
4. Gilks WR, Richardson S, Spiegelhalter D. Markov Chain Monte Carlo in practice. Boca Raton: CRC; 1995.
5. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, Reich NG, Lessler J. The incubation period of Coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. 2020;1:1. https://doi.org/10.7326/m20-0504.
Cited by
162 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献