Predictive modelling of concrete compressive strength incorporating GGBS and alkali using a machine-learning approach
Author:
Publisher
Springer Science and Business Media LLC
Subject
Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s42107-023-00805-z.pdf
Reference27 articles.
1. Askarian, M., Tao, Z., Adam, G., & Samali, B. (2018). Mechanical properties of ambient cured one-part hybrid OPC-geopolymer concrete. Construction and Building Materials, 186, 330–337.
2. Asteris, P. G., Skentou, A. D., Bardhan, A., Samui, P., & Lourenço, P. B. (2021). Soft computing techniques for the prediction of concrete compressive strength using non-destructive tests. Construction and Building Materials, 303, 124450.
3. Chaabene, W. B., Flah, M., & Nehdi, M. L. (2020). Machine learning prediction of mechanical properties of concrete: Critical review. Construction and Building Materials, 260, 119889.
4. Chithra, S., Kumar, S. S., Chinnaraju, K., & Ashmita, F. A. (2016). A comparative study on the compressive strength prediction models for HIGH-PERFORMANCE CONCRETE containing nano silica and copper slag using regression analysis and artificial neural networks. Construction and Building Materials, 114, 528–535.
5. Dantas, A. T. A., Leite, M. B., & de Jesus Nagahama, K. (2013). Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks. Construction and Building Materials, 38, 717–722.
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Predicting split tensile strength in Portland and geopolymer concretes using machine learning algorithms: a comparative study;Journal of Building Pathology and Rehabilitation;2024-08-17
2. A Comparative Analysis of Machine Learning Algorithms for Predicting Fundamental Periods in Reinforced Concrete Frame Buildings;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2024-08-01
3. Compressive strength of concrete formulated with waste materials using neural networks;Asian Journal of Civil Engineering;2024-06-09
4. Effects of alkaline activators and other factors on the properties of geopolymer concrete using industrial wastes based on GEP-based models;European Journal of Environmental and Civil Engineering;2024-05-23
5. Soft computing techniques for analysing the mechanical properties of egg shell powder-based concrete;Advances in Civil and Architectural Engineering;2024-05-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3