A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks
Author:
Publisher
Elsevier BV
Subject
General Materials Science,Building and Construction,Civil and Structural Engineering
Reference40 articles.
1. Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks;Dantas;Constr. Build. Mater.,2013
2. Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI;Boga;Compos. Part B,2013
3. Studies on ultra high performance concrete incorporating copper slag as fine aggregate;Ambily;Constr. Build. Mater.,2015
4. Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network;Atici;Expert Syst. Appl.,2011
5. Prediction of efficiency factor of ground – granulated blast – furnace slag of concrete using artificial neural network;Boukhatem;ACI Mater. J.,2011
Cited by 261 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep learning neural networks for monitoring early-age concrete strength through a surface-bonded PZT sensor configuration;Measurement;2025-02
2. Optimizing pervious concrete with machine learning: Predicting permeability and compressive strength using artificial neural networks;Construction and Building Materials;2024-09
3. Eco-friendly mix design of slag-ash-based geopolymer concrete using explainable deep learning;Results in Engineering;2024-09
4. Predictive Methods for the Evolution of Oil Well Cement Strength Based on Porosity;2024-08-28
5. A Comparative Analysis of Machine Learning Algorithms for Predicting Fundamental Periods in Reinforced Concrete Frame Buildings;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2024-08-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3