Forecasting heating and cooling loads in residential buildings using machine learning: a comparative study of techniques and influential indicators

Author:

Mehdizadeh Khorrami Behrouz,Soleimani Alireza,Pinnarelli Anna,Brusco Giovanni,Vizza Pasquale

Abstract

AbstractResidential buildings are a significant source of energy consumption and greenhouse gas emissions, making it crucial to accurately predict their energy demand for reducing their environmental impact. In this study, machine-learning techniques such as linear regression, decision tree classification, logistic regression, and neural networks were applied to forecast the heating and cooling loads of 12 different building types using their area and height attributes. The correlation coefficient was utilized to assign weights to the predictors in linear regression, and the models’ performance was evaluated using metrics such as equations of R2, MAE, and RMSE. The decision tree technique demonstrated the highest accuracy of 98.96% and 93.24% for predicting heating and cooling loads, respectively, among the classification methods. Notably, the cooling load prediction was more accurate than the heating load prediction. The height and area of the roof and floor, along with the relative compactness of the building, were identified as the most influential factors in the heating and cooling loads. These findings have significant implications for optimizing energy efficiency in residential buildings and mitigating their impact on climate change.

Funder

Università della Calabria

Publisher

Springer Science and Business Media LLC

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3