Incorporation of artificial neural network with principal component analysis and cross-validation technique to predict high-performance concrete compressive strength
Author:
Funder
AlMaaref University College
Publisher
Springer Science and Business Media LLC
Subject
Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s42107-021-00362-3.pdf
Reference53 articles.
1. Afan, H. A., et al. (2015). ANN Based sediment prediction model utilizing different input scenarios. Water Resources Management, 29(4), 1231–1245.
2. Aïtcin, P.-C., High performance concrete. 2011: CRC press.
3. Akbari, M. and V. Jafari Deligani, Data driven models for compressive strength prediction of concrete at high temperatures. Frontiers of Structural and Civil Engineering, 2020.
4. AlOmar, M. K., et al. (2020). Data-Driven Model for the Prediction of Total Dissolved Gas: Robust Artificial Intelligence Approach. Advances in Civil Engineering, 2020, 6618842.
5. AlOmar, M. K., Hameed, M. M., & AlSaadi, M. A. (2020). Multi hours ahead prediction of surface ozone gas concentration: Robust artificial intelligence approach. Atmospheric Pollution Research, 11(9), 1572–1587.
Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Potential of eNose Technology for Monitoring Biological CO2 Conversion Processes;Transactions of Tianjin University;2024-08-30
2. Predicting the compressive strength of self-compacting concrete by developed African vulture optimization algorithm-Elman neural networks;Scientific Reports;2024-08-29
3. Hybrid learning integration of iterative weighted least squares and backpropagation neural networks for advanced manufacturing analysis;The International Journal of Advanced Manufacturing Technology;2024-08-08
4. Prediction of pull-out behavior of timber glued-in glass fiber reinforced polymer and steel rods under various environmental conditions based on ANN and GEP models;Case Studies in Construction Materials;2024-07
5. A Comparative Study on the Compressive Strength of Cement-Based Composites Using Machine Learning Models;2024-05-31
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3