Data-Driven Model for the Prediction of Total Dissolved Gas: Robust Artificial Intelligence Approach

Author:

AlOmar Mohamed Khalid1ORCID,Hameed Mohammed Majeed1ORCID,Al-Ansari Nadhir2ORCID,AlSaadi Mohammed Abdulhakim34

Affiliation:

1. Department of Civil Engineering, Al-Maaref University College, Ramadi, Iraq

2. Civil Engineering Department, Environmental and Natural Resources Engineering, Lulea University of Technology,, 97187 Lulea, Sweden

3. National Chair of Materials Science and Metallurgy, University of Nizwa, Nizwa, Oman

4. Nanotechnology & Catalysis Research Centre (NANOCAT), IPS Building, University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract

Saturated total dissolved gas (TDG) is recently considered as a serious issue in the environmental engineering field since it stands behind the reasons for increasing the mortality rates of fish and aquatic organisms. The accurate and more reliable prediction of TDG has a very significant role in preserving the diversity of aquatic organisms and reducing the phenomenon of fish deaths. Herein, two machine learning approaches called support vector regression (SVR) and extreme learning machine (ELM) have been applied to predict the saturated TDG% at USGS 14150000 and USGS 14181500 stations which are located in the USA. For the USGS 14150000 station, the recorded samples from 13 October 2016 to 14 March 2019 (75%) were used for training set, and the rest from 15 March 2019 to 13 October 2019 (25%) were used for testing requirements. Similarly, for USGS 14181500 station, the hourly data samples which covered the period from 9 June 2017 till 11 March 2019 were used for calibrating the models and from 12 March 2019 until 9 October 2019 were used for testing the predictive models. Eight input combinations based on different parameters have been established as well as nine statistical performance measures have been used for evaluating the accuracy of adopted models, for instance, not limited, correlation of determination ( R 2 ), mean absolute relative error (MAE), and uncertainty at 95% ( U 95 ). The obtained results of the study for both stations revealed that the ELM managed efficiently to estimate the TDG in comparison to SVR technique. For USGS 14181500 station, the statistical measures for ELM (SVR) were, respectively, reported as R 2 of 0.986 (0.986), MAE of 0.316 (0.441), and U 95 of 3.592 (3.869). Lastly, for USGS 14181500 station, the statistical measures for ELM (SVR) were, respectively, reported as R 2 of 0.991 (0.991), MAE of 0.338 (0.396), and U 95 of 0.832 (0.837). In addition, ELM’s training process computational time is stated to be much shorter than that of SVM. The results also showed that the temperature parameter was the most significant variable that influenced TDG relative to the other parameters. Overall, the proposed model (ELM) proved to be an appropriate and efficient computer-assisted technology for saturated TDG modeling that will contribute to the basic knowledge of environmental considerations.

Funder

AlMaarif University College

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3