1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/. Software available from tensorflow.org
2. Abril PS, Plant R (2007) A comprehensive survey on graph neural networks. Commun ACM 50(1), 36–44. https://doi.org/10.1145/1188913.1188915
3. Abuadbba S, Kim K, Kim M, Thapa C, Camtepe SA, Gao Y, Kim H, Nepal S (2020) Can we use split learning on 1d cnn models for privacy preserving training? arXiv:2003.12365
4. Aono Y, Hayashi T, Trieu Phong L, Wang L (2016) Scalable and secure logistic regression via homomorphic encryption. In: CODASPY. ACM, pp 142–144
5. Bojchevski A, Günnemann S (2017) Deep gaussian embedding of attributed graphs: Unsupervised inductive learning via ranking. arXiv:1707.03815