Performance Analysis of Chemotaxis-Inspired Stochastic Controllers for Multi-Agent Coverage

Author:

Izumi ShinsakuORCID

Abstract

AbstractIn this study, we analyze the performance of stochastic coverage controllers inspired by the chemotaxis of bacteria. The control algorithm of bacteria to generate the chemotaxis switches between forward movement and random rotation based on the difference between the current and previous concentration of a chemical. The considered coverage controllers mimic this algorithm, where bacteria and the chemical concentration are regarded as agents and the achieved degree of coverage, respectively. Because the coverage controllers operate similar to the control algorithm of bacteria, they are potentially suitable for molecular robots. Molecular robots, which consist of biomolecules, are recognized as a key component in the development of future medical systems based on micro-robots working inside the human body. However, the performance of the controllers has not yet been analyzed, and no theoretical guarantee of coverage completion has been provided. We address this problem by determining whether a performance index that quantifies the achieved degree of coverage increases over time for the feedback system. We first show that the performance index is characterized by the distance between agents under certain conditions. Using this result, we prove that the performance index increases with probability 1 under some conditions although the controllers are stochastic. This provides partial evidence for coverage completion, which makes the controllers more reliable. The analysis result is validated by numerical experiments.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Theoretical Computer Science,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3