Bisociative Literature-Based Discovery: Lessons Learned and New Word Embedding Approach

Author:

Lavrač Nada,Martinc Matej,Pollak Senja,Pompe Novak Maruša,Cestnik BojanORCID

Abstract

AbstractThe field of bisociative literature-based discovery aims at mining scientific literature to reveal yet uncovered connections between different fields of specialization. This paper outlines several outlier-based literature mining approaches to bridging term detection and the lessons learned from selected biomedical literature-based discovery applications. The paper addresses also new prospects in bisociative literature-based discovery, proposing an advanced embeddings-based technology for cross-domain literature mining.

Funder

Horizon 2020

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Theoretical Computer Science,Software

Reference44 articles.

1. Abgaz, Y., O’Donoghue, D., Hurley, D., Smorodinnikov, D.: Evaluation of analogical inferences formed from automatically generated representations of scientific publications. In: 24th Irish Conference on Artificial Intelligence and Cognitive Science (2016)

2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I., et al.: Fast discovery of association rules. Adv. Knowl. Discov. Data Min. 12(1), 307–328 (1996)

3. Berthold, M. (ed.): Bisociative Knowledge Discovery. Springer, Berlin (2012)

4. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

5. Brodley, C.E., Friedl, M.A.: Identifying mislabeled training data. J. Artif. Intell. Res. 11, 131–167 (1999)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AHAM: Adapt, Help, Ask, Model Harvesting LLMs for Literature Mining;Lecture Notes in Computer Science;2024

2. Preliminary Analysis of the Risk Factor Identification Embedding Model for Cardiovascular Disease;2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2021-11-01

3. PubMed-Scale Chemical Concept Embeddings Reconstruct Physical Protein Interaction Networks;Frontiers in Research Metrics and Analytics;2021-04-13

4. Bisociative Literature-Based Discovery: Lessons Learned and New Word Embedding Approach;New Generation Computing;2020-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3