SOMDROID: android malware detection by artificial neural network trained using unsupervised learning
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Cognitive Neuroscience,Computer Vision and Pattern Recognition,Mathematics (miscellaneous)
Link
http://link.springer.com/content/pdf/10.1007/s12065-020-00518-1.pdf
Reference81 articles.
1. Alkhateeb EMS (2017) Dynamic malware detection using API similarity. In: 2017 IEEE international conference on computer and information technology (CIT), IEEE, pp 297–301
2. Allix K, Bissyandé TF, Jérome Q, Klein J, Traon YL et al (2016) Empirical assessment of machine learning-based malware detectors for android. Empir Softw Eng 21(1):183–211
3. Almin SB, Chatterjee M (2015) A novel approach to detect android malware. Procedia Comput Sci 45:407–417
4. Alzaylaee MK, Yerima SY, Sezer S (2017) Emulator vs real phone: android malware detection using machine learning. In: Proceedings of the 3rd ACM on international workshop on security and privacy analytics
5. Andriatsimandefitra R, Tong VVT (2015) Detection and identification of android malware based on information flow monitoring. In: 2015 IEEE 2nd international conference on cyber security and cloud computing, IEEE, pp 200–203
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. TDBAMLA: Temporal and dynamic behavior analysis in Android malware using LSTM and attention mechanisms;Computer Standards & Interfaces;2025-03
2. PHIGrader: Evaluating the effectiveness of Manifest file components in Android malware detection using Multi Criteria Decision Making techniques;Journal of Network and Computer Applications;2024-12
3. AI-powered malware detection with Differential Privacy for zero trust security in Internet of Things networks;Ad Hoc Networks;2024-08
4. DETECTION OF ANDROID MALWARE USING DEEP LEARNING ENSEMBLE WITH CHEETAH-OPTIMIZED FEATURE SELECTION;Advances and Applications in Discrete Mathematics;2024-06-06
5. MADRAS-NET: A deep learning approach for detecting and classifying android malware using Linknet;Measurement: Sensors;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3