Author:
Allix Kevin,Bissyandé Tegawendé F.,Jérome Quentin,Klein Jacques,State Radu,Le Traon Yves
Publisher
Springer Science and Business Media LLC
Reference37 articles.
1. Allix K, Bissyandé TF, Jérome Q, Klein J, State R, Le Traon Y (2014a) Large-scale machine learning-based malware detection: confronting the “10-fold cross validation” scheme with reality. In: Proceedings of the 4th ACM conference on data and application security and privacy. ACM, New York, CODASPY ’14, pp 163–166. doi: 10.1145/2557547.2557587
2. Allix K, Jérome Q, Bissyandé TF, Klein J, State R, Le Traon Y (2014b) A forensic analysis of android malware: how is malware written and how it could be detected? In: Computer software and applications conference (COMPSAC)
3. Amos B, Turner H, White J (2013) Applying machine learning classifiers to dynamic android malware detection at scale. In: 2013 9th international wireless communications and mobile computing conference (IWCMC), pp 1666–1671. doi: 10.1109/IWCMC.2013.6583806
4. AndroGuard (2013) Apktool for reverse engineering android applications. https://code.google.com/p/androguard/ . Accessed 09 Sep 2013
5. AppBrain (2013a) Comparison of free and paid android apps. http://www.appbrain.com/stats/free-and-paid-android-applications . Accessed 09 Sep 2013
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献